Ethylene and plant responses to phosphate deficiency
نویسندگان
چکیده
Phosphorus is an essential macronutrient for plant growth and development. Phosphate (Pi), the major form of phosphorus that plants take up through roots, however, is limited in most soils. To cope with Pi deficiency, plants activate an array of adaptive responses to reprioritize internal Pi use and enhance external Pi acquisition. These responses are modulated by sophisticated regulatory networks through both local and systemic signaling, but the signaling mechanisms are poorly understood. Early studies suggested that the phytohormone ethylene plays a key role in Pi deficiency-induced remodeling of root system architecture. Recently, ethylene was also shown to be involved in the regulation of other signature responses of plants to Pi deficiency. In this article, we review how researchers have used pharmacological and genetic approaches to dissect the roles of ethylene in regulating Pi deficiency-induced developmental and physiological changes. The interactions between ethylene and other signaling molecules, such as sucrose, auxin, and microRNA399, in the control of plant Pi responses are also examined. Finally, we provide a perspective for the future research in this field.
منابع مشابه
Ethylene's role in phosphate starvation signaling: more than just a root growth regulator.
Phosphate (Pi) is a common limiter of plant growth due to its low availability in most soils. Plants have evolved elaborate mechanisms for sensing Pi deficiency and for initiating adaptive responses to low Pi conditions. Pi signaling pathways are modulated by both local and long-distance, or systemic, sensing mechanisms. Local sensing of low Pi initiates major root developmental changes aimed a...
متن کاملHPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling
The phytohormone ethylene plays important roles in regulating plant responses to phosphate (Pi) starvation. To date, however, no molecular components have been identified that interact with ethylene signalling in regulating such responses. In this work, an Arabidopsis mutant, hps4, was characterized that exhibits enhanced responses to Pi starvation, including increased inhibition of primary roo...
متن کاملThe Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches
Iron (Fe) is an essential plant micronutrient but is toxic in excess. Fe deficiency chlorosis is a major constraint for plant growth and causes severe losses of crop yields and quality. Under Fe deficiency conditions, plants have developed sophisticated mechanisms to keep cellular Fe homeostasis via various physiological, morphological, metabolic, and gene expression changes to facilitate the a...
متن کاملEthylene and the responses of plants to phosphate deficiency
The consideration as to how plants uptake and transport phosphorus (P) is of significant agronomic and economic importance, in part driven by finite reserves of rock phosphate. Our understanding of these mechanisms has been greatly advanced, particularly with respect to the responses of plants to P deficiency and the genetic dissection of the signalling involved. Further, the realization that t...
متن کاملRegulation of root elongation under phosphorus stress involves changes in ethylene responsiveness.
We characterized the growth of the primary root of Arabidopsis under phosphorus sufficiency (1 mM phosphate) and deficiency (1 microM phosphate), focusing on the role of ethylene. We quantified the spatial profile of relative elongation with a novel method based on image processing, as well as the production rates of cortical cells, trichoblasts, and atrichoblasts. Phosphorus deficiency moderat...
متن کامل